dWS

Vectors:
How to better support a

nasty data type

Jonathan Katz

Principal Product Manager — Technical
Amazon RDS

Agenda

Overview: Why do we care about vector search?
Why use PostgreSQL for vector searches?
Year-in-review of pgvector development

Ongoing work and recommendations

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

goolollolioo

|

@ 0:°:0000° 00ccQc 0
e - - 00 -00 -
00 : - 0°:-0:-00-00 ¢ o
00 . o

(=]
(=] (=]
(=]
-— (=)
(=}
o (=)
(=]
o (=]
o —_
(=]
|
|
|
|
I
[\ \
| \
- 9000000 -00 90000 - o060 e o O
T) .0 @ o e - - 200 O ° . - e .
e -0 . . @00 - 90000 00 . e°e® 00 -

S—O8—0O——00 000000000 —O0—OO0O0=0000—0O0—O8 0000 —O0S80S0—=00

CoOee0o89
o—oo IOWOW

B—O=—coo—-L8c
OO —CCOO—0000——0—0OROO000 —CO=

60000 O=0=0000C00=C0=0 00

8—Co lm So—=08,8
OMOI O—O000E—0O00 — =000 = =0
—O—O — e, C =

WOQO Imwoo (o mmc =t=
OoO=—_Co=0O— —— =] —

O—OCHO_C—=—0—pO=—00=CC5 oo

So—Coco——00o ——eceePen9C 00 OO0

o O 900 O— — 0RO —— O

SEo2o OO0 ©ORBOL == O00O00—

Z—o—50 S06——[0L008 =00 80900

[a? Yole) —_— N —~—~ — ——— —_— O

Generative Al is powered
by foundation models

Pretrained on vast amounts of

unstructured data

Contain a large number of parameters that make

them capable of learning complex concepts

——O— = O—00=00 50— oC8e0—000
oooro ot oes—mg -8 SotBe S8 Sooss
COSoco=0 & Boo—0xoL—So0oB0E0=00

O==000—000—00=0000=

OO=000000O0TCO00O— OO0 —=

OOOO—0000 ,—O0—O——SO0m—0O—r

O —_— O = QO OO0 S0—0—
OO80—0C00COOO=L000— Im

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Can be applied in a wide range of contexts
Customize FMs using your data for domain-

specific tasks

aws
~—

Retrieval Augmented [,ve , & ANSwER
Generat|on (RAG) How much does a blue Sarhyg leden'tckrowse

elephant vase cost? typically costs $19.99

FOUNDATION

Configure FM to interact with MODEL

your data
KNOWLEDGE
BASES
Product catalog
Price data
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N

The role of vectors in RAG

PDF Document
document chunks
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N

3

3

Embeddings

Question & 4 Response

o> &

Embeddings Foundation
model

Question + Context

Database e

Challenges with vectors

« Time to generate embeddings .
1536 d 5|ons
0.12310 0.20559
- Embedding size 0.24234 0.70543
059 — at§2
Blue eleph “
. that can hod u
‘—Ge'm'p'Fe'Sﬂ'e'H F]hregz pplargg Zp 32 \F' 0.2 &3@
an aln .,.)
—> oKFB'
« Query time 0. 70543 0.20551
y 0.20559 ﬁ 0.59405

1,000,000 => 5.7/GB

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

N

Approximate nearest neighbor (ANN)

« Find similar vectors without searching
all of them

« Faster than exact nearest neighbor

« “Recall” - % of expected results

Recall: 80%

Key metrics to consider

Index build time

Index size

Recall

Query throughput (queries per second)

« p99 query latency

PostgreSQL as a "vector data

aws
2

{

"1d": 5432,
"name": "PostgreSqQL",
"description”: "world's most advanced open source

relational database',
"supportedversions': [16, 15, 14, 13, 12]

¥

{

"id": 5432, id 5432
"name" :
"PostgresqQL", name PostgresqQL
"description":
"world's most advanced description world's most...
open source relational
database", supportedversions [16,15,14,13,12]
"supportedversions":
[16, 15, 14, 13, 12]
}

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N

{

"id": 5432,
"name":
"PostgresqQL",

"description":
"world's most advanced
open source relational
database",

"supportedversions":
[16, 15, 14, 13, 12]

}

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N

Timeline of JSON storage

2000-2001: JSON invented

2004: AJAX model emerges in wider deployments

2006: RFC 4627 publishes JSON format

2006-2009: JSON-specific data stores emerge

2012: PostgreSQL adds support for JSON (text)

2013: ECMA-404 standardizes JSON

2014: PostgreSQL adds support for JSONB (binary)

2017: SQL/JSON standard published

2019: PostgreSQL adds SQL/JSON path language

2023: PostgreSQL adds SQL/JSON constructors and predicates
2024: PostgreSQL adds SQL/JSON query functions and JSON_TABLE

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Why use PostgreSQL for vector searches?

« Existing client libraries work without modification

= May require an upgrade
« Convenient to co-locate app + Al/ML data in same database

 Interfacing with PostgreSQL storage gives ACID transactional storage

Why care about ACID for vectors?

« Atomicity: "All or nothing" stored in transaction (bulk loads)

« Consistency: Follows rules for other data stored in database

« Isolation: Correctness in returned results; committed transactions "immediately
available"

Durability: One committed, vectors are safely stored.

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\/‘7

PostgreSQL support for vectors

Native Extensions
 ARRAY * pgvector
e cube —pg—embedding

* pgvecto.rs

« Lantern

« Timescale Vector
* pgvector-remote

@ star History

F pgvector/pgvecto]

SN
o
x

)
C
S
~J
(9
9
2
x
-
O

=L
o
=

Feb 28, 2023
| ®p gvector/pgvector: 1230

2024
star—historu.com
X} Y

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

© star History

F pgvector/pgvecto } to'ag 30, 2024

@ pgvector/pgvector: 783l

»
C
S
-~
Ny
Q0
D
T
X
O

e

2024
X star—history.com

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

pgvector popularity

W LlamaHub
Powered by

ChromaVectorStore

Vector Stores

) llama-index 3. & 77507 -16 days ago

PineconeVectorStore

Vector Stores

) llama-index 0. @ 20917 - 20 days ago

MilvusVectorStore

Vector Stores

2. @ 10468 -1dayago

) llama-index

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

PGVectorStore

Vector Stores

) llama-index 2 .- & 48563 - 5 days ago

WeaviateVectorStore

Vector Stores

) llama-index 0. & 11520 - 5 days ago

ElasticsearchStore

Vector Stores

) llama-index 0. @ 8706 - 14 days ago

Github

QdrantVectorStore

Vector Stores

) llama-index 5. @ 46872 - 16 days ago

OpensearchVectorStore

Vector Stores

) llama-index 0. € 10750 -1dayago

AzureAISearchVectorStore

) llama-index 1. & 8205 - 13 days ago

20

Why pgvector?

Recall-Queries per second (1/s) tradeoff - up and to the right is better Slft-1 28-euci ldea n

gsgngt

NGT-qg

NGT-panng

pynndescent

glass

hnsw(nmslib)

NGT-onng

scann

Milvus(Knowhere)

vamanal(diskann)

vearch

hnswlib

flann

faiss-ivfpgfs

n2

SW-graph(nmslib)

hnsw(vespa)

redisearch

hnsw(faiss)

mrpt

vald(NGT-anng)

tinyknn

luceneknn

weaviate

BallTree(nmslib)
= faiss-ivf

qdrant

annoy

pgvector

bruteforce-blas

1]
<
—
=
°

c

]

v

]

(2]

e

]

a

(%]

[
=

)

=

(o4

April 2023

1-1072

Recall

Source: https://github.com/erikbern/ann-benchmarks

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Why pgvector?

2025 2024

« Vector searches in PostgreSQL High performance vector searches

"It was there"

Support for larger vectors
« (Can use existing PostgreSQL drivers

Sustained, rapid improvements
« Open source

« C-based

Better support in developer tools

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 22
_/7

pgvector: Year-in-review timeline
« v0.4.x(1/2023 -6/2023)
= Improved IVFFlat plan costs
= |ncreasing dimension of vectors stored in table + index
« v0.5.x(8/2023 -10/2023)
= Add HNSW index + distance function performance improvements
= Parallel IVFFlat builds
« v0.6.x(1/2024 —3/2024)
= Parallel HNSW index builds + in-memory build optimizations
. Vv0.7.x(4/2024)
= halfvec (2-byte float), bit(n) index support, sparsevec (up to 1B dim)

= Quantization (scalar/binary), Jaccard/hamming distance, explicit SIMD

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

23

Indexing in pgvector

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N

How does pgvector index a vector?

0.0234 0.0253
0.093 0.1007
-0.9123 -0.9880
0.1055 0.1142

¥ Same dimensions?
¥ Magnitude > 0?

2“If not, normalize

Indexing methods: IVFFlat and HNSW

« IVFFlat « HNSW
= K-means based = Graph based
= Organize vectors into lists = (Organize vectors into

= Requires prepopulated data “neighborhoods’

= Insert time bounded by # lists 7 JERELE eI

» |nsertion time increases as data in
graph increases

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

IVFFlat index building parameters

« li1sts
= Number of “buckets” for organizing vectors

= Tradeoff between number of vectors in bucket and relevancy

CREATE INDEX ON products
USING i1vfflat(embedding) WITH (lists=3);

Building an IVFFlat index

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N

Building an IVFFlat index: Assign lists

Querying an IVFFlat index

SET i1vfflat.probes TO0 1
SELECT 1d FROM products ORDER BY $1 <-> embedding LIMIT 3

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved
N

Querying an IVFFlat index

N ‘

, Q ?
O

SET 1vfflat.probes TO 2
SELECT 1d FROM products ORDER BY $1 <-> embedding LIMIT 3

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved
N

HNSW index building parameters

e M
= Maximum number of bidirectional links between indexed vectors
» Default: 16

. ef_construction
= Number of vectors to maintain in “nearest neighbor” list
= Default: 64

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Building an HNSW index

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N

Building an HNSW index

Layer 2

Building an HNSW index

.

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Building an HNSW index

Layer 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Building an HNSW index

Layer O

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

HNSW query parameters

« hnsw.ef_search
= Number of vectors to maintain in “nearest neighbor” list

= Must be greater than or equal to LIMIT

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

| Querying an HNSW index

Layer 2

| Querying an HNSW index

0\./'@\

Layer 2

| Querying an HNSW index

Layer 1

| Querying an HNSW index

Layer 1

‘ Querying an HNSW index

‘ Querying an HNSW index

Layer O

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

I Quantization

Flat

[0.0435122, -0.2304432, -0.4521324,
0.98652234, -0.1123234, 0.75401234]

Scalar Quantization (2-byte float)

[0.0432, -0.234, -0.452,0.986,
-0.112, 0.751]

Scalar Quantization (1-byte uint)
[129, 99, 67, 244, 126, 230]

Binary Quantization
[1! O, O, l, 0, 1]

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

45

pgvector and Quantization

-- 2-byte float (fpl6) quantization
CREATE INDEX ON documents USING
hnsw((embedding: :halfvec(3072)) halfvec_cosine_ops);

SELECT 1id

FROM documents

ORDER BY embedding::halfvec(3072) <=> $1::halfvec(3072)
LIMIT 10;

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

46

pgvector and Quantization

-- Binary quantization
CREATE INDEX ON documents USING
hnsw ((binary_quantize(embedding)::b1t(3072)) bit_hamming_ops);

SELECT id FROM documents
ORDER BY binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)
LIMIT 10;

-- Rerank query for binary quantization
SELECT 1.1d FROM (
SELECT id, embedding <=> $1 AS distance
FROM 1tems
ORDER BY binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)
LIMIT 800 -- bound by hnsw.ef_search
) 1
ORDER BY 1i.distance LIMIT 10;

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

47

Scalar quantization

dbpedia-openai-1m-angular (1MM 1,536-dim); m=16; ef_construction=256

aws

N

© 2024, Amazon

No Quantization

2-byte float quantization

Index size (MB) 7734 3867
Index build time (s) 250 146
Recall @ ef_search=10 0.851 0.854
QPS @ ef_search=10 1154 1164
Recall @ ef_search=40 0.967 0.968
QPS @ ef_search=40 567 583
Recall @ ef_search=200 |[0.996 0.996
QPS @ ef_search=200 158 163

Web Services, Inc. or its affiliates. All rights reserved.

48

Binary quantization

dbpedia-openai-1m-angular (1MM 1,536-dim); m=16; ef_construction=256

aws
~—

No Quantization

Binary quantization / rerank

Index size (MB) 7734 473
Index build time (s) 250 49
Recall @ ef_search=10 0.851 0.604
QPS @ ef_search=10 1154 1687
Recall @ ef_search=40 0.967 0.916
QPS @ ef_search=40 567 883
Recall @ ef_search=200 0.996 0.990
QPS @ ef_search=200 158 236

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

49

Quantization limitations

« Reduction of information
« Law of large numbers / curse of dimensionality

« "Double storage" — heap / index

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

50

A year of pgvector in charts

pgvector index build time

dbpedia-openai-1000k-angular (1IMM 1536-dim) - Index Build Time

t10/0]0)

7000
/

10/0]0) /

)
g=10[0]0)
£ /
= 4000
< /
= 3000
()] J
2000 —
1000 //
0 \
N) Q N Q N o © N N
Ng e S % ° & N < & &
$ $ $ $ $ $ $ O © 5@
Q Q Q Q Q Q Q o & <
AS 6\6\ P
< N D
X 0
> ~
o J
A S
S S
$ Q
Q

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S~—" Build time ——Speedup

180
160
140
120
100
80
60
40
20

Speedup (x)

52

Impact of parallelism on HNSW build time

HNSW index build (1,000,000 128-dim vectors)

1000

900

800

700

600

500

Time (s)

400

300
200

100

1 2 4 8 16 32 64
Clients / Workers

Parallel Build essConcurrent Inserts

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Why index build speed matters (Serial build)

1.1TMM 1536-dim vectors, m=16, ef _search=20

250 0.94
200 // L 092

<

= 0.9

E g5 A _

= I

E 088 §

< 100 S B

E 0.86
e e D D Y
0 0.82

32 64 128 256 512

ef _construction

Build Time (min) e==Recall

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Why index build speed matters (Parallel build)

1.1TMM 1536-dim vectors, m=16, ef _search=20,
max_maintenance_workers=64

10 0.94
2 — 092
c
£ 7 059
E
3 0 T 088 =
5 5 - _ — — S
2, |l oy BN | B B B 086c
3
23 7 — N " B 084
ol B B = | 082
1 | I I I .

0) 0.8
32 64 128 256 512
ef_construction

Build time e==Recall
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N

pgvector index size

dbpedia-openai-1000k-angular (1MM 1536-dim)

8
7 | e /
: Il I = //
35 EEEE = -
S /
o 4 B B 7
N
& 3 — — — 7
2 | DN O B
1 — J
0
N i Q N QO YV Q) N g
i i & & & G S) & &
S S S S\ SR L S R A
AN & &
< C
L 2
N >
> A
/\Q' .\.0
RS 8
Q

aWS’ © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. I N deX Size — S p ace sav i ng S

18
16
14 __
S
12 »
=
10-;
g8 Q@
O
6 ©
a
2
pi
0

56

pgvector query latency (p99)

dbpedia-openai-1000k-angular (1MM 1536-dim) — p99 Latency @ 99% recall

180 35
160 — 30
140 [— —

. / 25 _
m / x
£ 100 / 20 o
£ 80 / 15 &
— o

60

/ 10 7

40

20 / >
0 0
& Sl $ & & & SO KQ'\(O & &
& & & & & & & A & ©
Q . (\Q ﬁb
& N &
& X
< O
o /\ng
’\0. '\-0
S a
Q

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved 57

~— ‘ p99 Latency —Speedup

pgvector throughput

BIGANN 10M (128-dim) on RDS PostgreSQL r7g.12xlarge (pgvector 0.6.2)
k=10 - x-axis is # concurrent clients

35000
30000
n
o
g25000
2
§ 20000
b
8 15000
k)
$ 10000
o
5000 —
0]
1 4 8 16 32 48 64 96 125| 1 4 8 16 32 48 64 96 125| 1 4 8 16 32 48 64 96 125
ef_search=45 ef_search=75 ef_search=200
Recall @ 0.91 Recall @ 0.96 Recall @ 0.99
aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N

58

Ongoing challenges and
recommendations

aws
2

The 8K conundrum

« Page: PostgreSQL atomic storage unit
= 8192 bytes = 8K = 8KiB

« Heap (table) pages are resizable as a compile time flag
« Index pages are not resizable
. This is a real (®) problem for vectors

= 1536-dim 4-byte vector = 6KiB
= 3072-dim 4-byte vector = 12KiB

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

60

® Can't we can TOAST?

« TOAST (The Oversized-Attribute Storage Technique) is a mechanism for storing
data larger than 8KB

= By default, PostgreSQL “TOASTs" values over 2KB (510d 4-byte float)

« Storage types:
= PLAIN: Data stored inline with table
= EXTENDED: Data stored/compressed in TOAST table when threshold exceeded

— pgvector default before 0.6.0
= EXTERNAL: Data stored in TOAST table when threshold exceeded

— pgvector default 0.6.0+
= MAIN: Data stored compressed inline with table

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 61
_/7

Visualizing TOAST for pgvector

aws
~—

/

12,"jkatz",[0.3213,0.
12321,0.12312,0.12
321,0.12321,0.1232
1,0.1123123,0.1232
1,0.12321,0.1232,0.
12312,0.12321,0.12
321,0.12312]

© 2024, Amazon

/

12,"jkatz",12345678

/

[0.3213,0.12321,0.1
2312,0.12321,0.123
21,0.12321,0.11231
23,0.12321,0.12321
,0.1232,0.12312,0.1
2321,0.12321,0.123
12]

PLAIN

Web Services, Inc. or its affiliates. All rights reserved.

EXTENDED / EXTERNAL

62

Impact of TOAST on vector data

« Traditionally, TOAST data is not on the "hot path"

« Impacts query plan and maintenance operations
« Compression is ineffective

« Unable to use for index pages

63

Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)
-> Gather Maraa (cost=772135.51..1991670.17 rows=10000002 width=12)
workers Planned: 6
-> SUME=Geese=771135.42..775302.08 rows=1666667 width=12)
Sort Key: ((<-> embedding))

-> Parallel Seq Scan on vecs1l28 (cost=0.00..735119.34 rows=1666667
width=12)

128 dimensions

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)
-> Gather Maraa (cost=149970.15..1347330.44 rows=10000116 width=12)
workers Planned: 4
-> SUTE=feest=T459/70.09..155220.16 rows=2500029 width=12)
Sort Key: (($1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029
width=12)

1,536 dimensions

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)
-> Gather Maraa (cost=95704.33..1352239.13 rows=10000111 width=12)
workers Planned: 11
-> SUT T=feest=94/04.11..96976.86 rows=909101 width=12)
Sort Key: (($1 <-> embedding))
-> Parallel Seq Scan on vecs1l536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Improving PostgreSQL storage of vector data

Continue investing in quantization

Improve planner to understand when TOAST data is part of the hot path

TOAST / page chaining system for index pages

Modifiable size for index pages

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved b 67

Filtering

SELECT 1d
FROM products

ORDER BY :'q' <-> products.embedding
LIMIT 10;

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N

How filtering impacts ANN queries

« PostgreSQL may choose to not use the index
« Uses an index, but does not return enough results

o Filtering occurs after using the index

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Current filtering strategies

o Partial index

o Partition

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

N

CREATE INDEX ON docs
USING hnsw(embedding vector_12_ops)
WHERE category_id = 7;
CREATE TABLE docs_cat?
PARTITION OF docs
FOR VALUES IN (7);

CREATE INDEX ON docs_cat?
USING hnsw(embedding vector_12_ops);

Filtering with "hybrid search"

SELECT 1d
FROM products
WHERE
plainto_tsquery('english', 'elephant vase') @@
to_tsvector('english', description)
ORDER BY :'q' <=> embedding
LIMIT 10;

71

Improving filtering with vector data in PostgreSQL

"Multi-column" indexes

Remove extra distance calculation executions when filtering junk columns

= |ndex-only scans

Pushdown to covering indexes

Using other index mechanisms to filter data set

I pgvector and VACUUM

« Innovation: pgvector HNSW implementation supports updates and deletes!

pons

Phase 2: Retair

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved
_/7

Improving VACUUM for pgvector

« Framework for parallel vacuum of custom index types

« Anything that can simplify implementing VACUUM :-)

Distributed queries for pgvector — why?

« Not enough memory for workload to
meet latency target

« Network overhead must be acceptable

« Can manage complexity of multi-node

|
system @

Setup foreign data wrapper

CREATE EXTENSION IF NOT EXISTS vector,
CREATE EXTENSION IF NOT EXISTS postgres_fdw;

CREATE SERVER vectorsl
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (

async_capable 'true', extensions 'vector', dbname 'vectors', host
'<NODE1>"

);

CREATE SERVER vectors?2
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (

async_capable 'true', extensions 'vector', dbname 'vectors', host
'<NODE2>"'

) .
dvvs © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

Setup foreign tables

CREATE TABLE vectors (
id uuid,
node_id 1int,
embedding vector(768)
) PARTITION BY LIST(node_1id);

CREATE FOREIGN TABLE vectors_nodel PARTITION OF vectors
FOR VALUES IN (1)
SERVER vectorsl
OPTIONS (schema_name 'public', table_name 'vectors');

CREATE FOREIGN TABLE vectors_node2 PARTITION OF vectors
FOR VALUES IN (2)
SERVER vectors?
OPTIONS (schema_name 'public', table_name 'vectors');

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\/‘7

Example EXPLAIN output

Limit (cost=200.01..206.45 rows=10 width=28) (actual time=18.171..18.182 rows=10

Toopss
> Merge Append (kost=200.01..3222700.01 rows=5000000 width=28) (actual
time™el. 169 2 Y rows=10 loops=1)

Sort Key: (('$1'::vector <=> vectors.embedding))

-> Foreign Scan on vectors_nodel vectors_1 (cost=100.00..1586350.00
rows=2500000 width=28) (actual time=8.607..8.609 rows=2 loops=1)

-> Foreign Scan on vectors_node2 vectors_2 (cost=100.00..1586350.00
rows=2500000 width=28) (actual time=9.559..9.566 rows=9 loops=1)

Planning Time: 0.298 ms
Execution Time: 19.355 ms

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\/‘7

Parallel query for pgvector

« pgvector doesn't support parallel query
= Benefits IVFFlat more than HNSW

« Index AM won't let PostgreSQL choose parallel plan

79

Hardware acceleration for pgvector

Index building (esp. HNSW) uses most computation time

= (Can see increased CPU utilization with higher hnsw.ef_search

pgvector uses compiler autovectorization, but has started adding explicit dispatching
instructions

Newer CPU architectures contain more instructions for SIMD, but may not be widely available

GPU - huge penalty to move to GPU memory without GPUDirect
= Index building could benefit from GPU

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 80
_/7

"Dogs not barking"

« Matrices / tensors
« Storage type / capacity
« Native vector support for PostgreSQL

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

81

Summary and next steps

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N

(Prioritized) summary of areas to improve

Filters

= Hybrid search

« Parallelized vacuum

« Better async pushdown for postgres_fdw
 Additional hardware acceleration methods
« Parallel query

« TOAST / storage updates

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved b 83

Community contributions make pgvector better

« Improved locking during HNSW build

« SIMD dispatching for distance functions

 Integration of upstream SIMD support (pg_popcount)

« Memory allocation / usage optimizations during index builds

 |dentify common search patterns and help prioritize

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved b 84

Thank you!

Jonathan Katz

jkatz@amazon.com
@jkatz05

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
_/7

85

