
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vectors:
How to better support a
nasty data type
Jonathan Katz
Principal Product Manager – Technical
Amazon RDS

1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Overview: Why do we care about vector search?

Why use PostgreSQL for vector searches?

Year-in-review of pgvector development

Ongoing work and recommendations

Agenda

2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pretrained on vast amounts of
unstructured data

Contain a large number of parameters that make
them capable of learning complex concepts

Can be applied in a wide range of contexts

Customize FMs using your data for domain-
specific tasks

Generative AI is powered
by foundation models

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval Augmented
Generation (RAG)

Configure FM to interact with
your data

A N S W E RQ U E S T I O N

K N O W L E D G E
B A S E S

F O U N D A T I O N
M O D E L

How much does a blue
elephant vase cost?

Product catalog

Price data

A blue elephant vase
typically costs $19.99
Sorry, I don't know

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The role of vectors in RAG

Document
chunks

EmbeddingsPDF
document

Database

User

Embeddings Foundation
model

1

4

Question

Question + Context

Response

2 3

5

6

7

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

Blue elephant vase
that can hold up to
three plants in it,
hand painted…

0.1234
0.1231
0.1232
0.9005
0.2489

1536 dimensions

4-byte floats

6152B => 6KiB

0.12310
0.24234
0.59405
0.23430
0.23432
0.20551
0.70543
0.20559

0.20559
0.70543
0.23432
0.24234
0.23430
0.12310
0.20551
0.59405

1,000,000 => 5.7GB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Approximate nearest neighbor (ANN)

• Find similar vectors without searching
all of them

• Faster than exact nearest neighbor

• “Recall” – % of expected results

Recall: 80%

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Key metrics to consider

• Index build time

• Index size

• Recall

• Query throughput (queries per second)

• p99 query latency

9

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL as a "vector database"

10

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

{

 "id": 5432,

 "name": "PostgreSQL",

 "description": "World's most advanced open source
relational database",

 "supportedVersions": [16, 15, 14, 13, 12]

}

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

{

 "id": 5432,
 "name":

"PostgreSQL",
 "description":
"World's most advanced

open source relational
database",

 "supportedVersions":
[16, 15, 14, 13, 12]
}

id 5432

name PostgreSQL

description world's most...

supportedVersions [16,15,14,13,12]

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

{

 "id": 5432,
 "name":

"PostgreSQL",
 "description":
"World's most advanced

open source relational
database",

 "supportedVersions":
[16, 15, 14, 13, 12]
}

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Timeline of JSON storage
• 2000-2001: JSON invented

• 2004: AJAX model emerges in wider deployments

• 2006: RFC 4627 publishes JSON format

• 2006-2009: JSON-specific data stores emerge

• 2012: PostgreSQL adds support for JSON (text)

• 2013: ECMA-404 standardizes JSON

• 2014: PostgreSQL adds support for JSONB (binary)

• 2017: SQL/JSON standard published

• 2019: PostgreSQL adds SQL/JSON path language

• 2023: PostgreSQL adds SQL/JSON constructors and predicates

• 2024: PostgreSQL adds SQL/JSON query functions and JSON_TABLE

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why use PostgreSQL for vector searches?

• Existing client libraries work without modification

§ May require an upgrade

• Convenient to co-locate app + AI/ML data in same database

• Interfacing with PostgreSQL storage gives ACID transactional storage

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why care about ACID for vectors?

• Atomicity: "All or nothing" stored in transaction (bulk loads)

• Consistency: Follows rules for other data stored in database

• Isolation: Correctness in returned results; committed transactions "immediately
available"

• Durability: One committed, vectors are safely stored.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Native

• ARRAY
• cube

Extensions

• pgvector
• pg_embedding
• pgvecto.rs
• Lantern
• Timescale Vector
• pgvector-remote

PostgreSQL support for vectors

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 18

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 19

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector popularity

20

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why pgvector?

April 2023

sift-128-eucildean

Source: https://github.com/erikbern/ann-benchmarks

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

2023

• Vector searches in PostgreSQL
• "It was there"

• Can use existing PostgreSQL drivers

• Open source

• C-based

2024

• High performance vector searches

• Support for larger vectors

• Sustained, rapid improvements

• Better support in developer tools

22

Why pgvector?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector: Year-in-review timeline
• v0.4.x (1/2023 – 6/2023)

§ Improved IVFFlat plan costs

§ Increasing dimension of vectors stored in table + index

• v0.5.x (8/2023 – 10/2023)

§ Add HNSW index + distance function performance improvements

§ Parallel IVFFlat builds

• v0.6.x (1/2024 – 3/2024)

§ Parallel HNSW index builds + in-memory build optimizations

• v0.7.x (4/2024)

§ halfvec (2-byte float), bit(n) index support, sparsevec (up to 1B dim)

§ Quantization (scalar/binary), Jaccard/hamming distance, explicit SIMD
23

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Indexing in pgvector

24

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How does pgvector index a vector?

0.0234
0.093

 -0.9123
0.1055

Valid?

✅ Same dimensions?
✅ Magnitude > 0?

Normalized?

🛠 If not, normalize

0.0253
0.1007

 -0.9880
0.1142

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Indexing methods: IVFFlat and HNSW

• IVFFlat

§ K-means based

§ Organize vectors into lists

§ Requires prepopulated data

§ Insert time bounded by # lists

• HNSW

§ Graph based

§ Organize vectors into
“neighborhoods”

§ Iterative insertions

§ Insertion time increases as data in
graph increases

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat index building parameters

• lists

§ Number of “buckets” for organizing vectors

§ Tradeoff between number of vectors in bucket and relevancy

CREATE INDEX ON products
USING ivfflat(embedding) WITH (lists=3);

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an IVFFlat index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an IVFFlat index: Assign lists

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an IVFFlat index

SET ivfflat.probes TO 1

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an IVFFlat index

SET ivfflat.probes TO 2

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW index building parameters

• m

§ Maximum number of bidirectional links between indexed vectors

§ Default: 16

• ef_construction

§ Number of vectors to maintain in “nearest neighbor” list

§ Default: 64

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 0

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW query parameters

• hnsw.ef_search

§ Number of vectors to maintain in “nearest neighbor” list

§ Must be greater than or equal to LIMIT

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Quantization

45

[0.0435122, -0.2304432, -0.4521324,
 0.98652234, -0.1123234, 0.75401234]

Flat

[0.0432, -0.234, -0.452,0.986,
-0.112, 0.751]

Scalar Quantization (2-byte float)

[1, 0, 0, 1, 0, 1]

Binary Quantization

[129, 99, 67, 244, 126, 230]

Scalar Quantization (1-byte uint)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector and Quantization

-- 2-byte float (fp16) quantization

CREATE INDEX ON documents USING

 hnsw((embedding::halfvec(3072)) halfvec_cosine_ops);

SELECT id

FROM documents

ORDER BY embedding::halfvec(3072) <=> $1::halfvec(3072)

LIMIT 10;

 46

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector and Quantization
-- Binary quantization

CREATE INDEX ON documents USING

 hnsw ((binary_quantize(embedding)::bit(3072)) bit_hamming_ops);

SELECT id FROM documents

ORDER BY binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)

LIMIT 10;

-- Rerank query for binary quantization

SELECT i.id FROM (

 SELECT id, embedding <=> $1 AS distance

 FROM items

 ORDER BY binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)

 LIMIT 800 -- bound by hnsw.ef_search

) i

ORDER BY i.distance LIMIT 10;

 47

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scalar quantization

48

No Quantization 2-byte float quantization

Index size (MB) 7734 3867

Index build time (s) 250 146

Recall @ ef_search=10 0.851 0.854

QPS @ ef_search=10 1154 1164

Recall @ ef_search=40 0.967 0.968

QPS @ ef_search=40 567 583

Recall @ ef_search=200 0.996 0.996

QPS @ ef_search=200 158 163

dbpedia-openai-1m-angular (1MM 1,536-dim); m=16; ef_construction=256

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Binary quantization

49

No Quantization Binary quantization / rerank

Index size (MB) 7734 473

Index build time (s) 250 49

Recall @ ef_search=10 0.851 0.604

QPS @ ef_search=10 1154 1687

Recall @ ef_search=40 0.967 0.916

QPS @ ef_search=40 567 883

Recall @ ef_search=200 0.996 0.990

QPS @ ef_search=200 158 236

dbpedia-openai-1m-angular (1MM 1,536-dim); m=16; ef_construction=256

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Quantization limitations

• Reduction of information

• Law of large numbers / curse of dimensionality

• "Double storage" – heap / index

50

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A year of pgvector in charts

51

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector index build time

52

0

20

40

60

80

100

120

140

160

180

0

1000

2000

3000

4000

5000

6000

7000

8000

r7
gd

.041

r7
gd

.044

r7
gd

.050

r7
gd

.051

r7
gd

.060

r7
gd

.062

r7
gd

.070

r7
gd

.070.fp
16

r7
gd

.070.bq-h
am

ming-re
ra

nk

r7
gd

.070.bq-ja
cc

ar
d-re

ra
nk

Sp
ee

du
p

(x
)

Bu
ild

 t
im

e
(s

)

dbpedia-openai-1000k-angular (1MM 1536-dim) - Index Build Time

Build time Speedup

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of parallelism on HNSW build time

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64

Ti
m

e
(s

)

Clients / Workers

HNSW index build (1,000,000 128-dim vectors)

Parallel Build Concurrent Inserts

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why index build speed matters (Serial build)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0

50

100

150

200

250

32 64 128 256 512

Re
ca

ll

In
de

x
bu

ild
 (

m
in

)

ef_construction

1.1MM 1536-dim vectors, m=16, ef_search=20

Build Time (min) Recall

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why index build speed matters (Parallel build)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0
1
2
3
4
5
6
7
8
9

10

32 64 128 256 512

Re
ca

ll

In
de

x
bu

ild
 (m

in
)

ef_construction

1.1MM 1536-dim vectors, m=16, ef_search=20,
max_maintenance_workers=64

Build time Recall

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 56

0

2

4
6

8

10

12
14

16

18

0

1

2

3

4

5

6

7

8

r7
i.0

41

r7
i.0

44

r7
i.0

50

r7
i.0

51

r7
i.0

60

r7
i.0

62

r7
i.0

70

r7
i.0

70.fp
16

r7
i.0

70.bq-h
am

ming-re
ra

nk

r7
i.0

70.bq-ja
cca

rd
-re

ra
nk

Sp
ac

e
sa

vi
ng

s
(x

)

Si
ze

 (G
B)

dbpedia-openai-1000k-angular (1MM 1536-dim)

Index size Space savings

pgvector index size

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector query latency (p99)

57

0

5

10

15

20

25

30

35

0

20

40

60

80

100

120

140

160

180

r7
i.0

41

r7
i.0

44

r7
i.0

50

r7
i.0

51

r7
i.0

60

r7
i.0

62

r7
i.0

70

r7
i.0

70.fp
16

r7
i.0

70.bq-h
am

ming-re
ra

nk

r7
i.0

70.bq-ja
cc

ar
d-re

ra
nk

Sp
ee

du
p

(x
)

Ti
m

e
(m

s)

dbpedia-openai-1000k-angular (1MM 1536-dim) – p99 Latency @ 99% recall

p99 Latency Speedup

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 58

pgvector throughput

0

5000

10000

15000

20000

25000

30000

35000

1 4 8 16 32 48 64 96 125 1 4 8 16 32 48 64 96 125 1 4 8 16 32 48 64 96 125

ef_search=45 ef_search=75 ef_search=200

Recall @ 0.91 Recall @ 0.96 Recall @ 0.99

Q
ue

ri
es

 p
er

 s
ec

on
d

(Q
PS

)

BIGANN 10M (128-dim) on RDS PostgreSQL r7g.12xlarge (pgvector 0.6.2)
k=10 - x-axis is # concurrent clients

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Ongoing challenges and
recommendations

59

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The 8K conundrum
• Page: PostgreSQL atomic storage unit

§ 8192 bytes = 8K = 8KiB

• Heap (table) pages are resizable as a compile time flag

• Index pages are not resizable

• This is a real (😉) problem for vectors

§ 1536-dim 4-byte vector = 6KiB

§ 3072-dim 4-byte vector = 12KiB

60

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

🍞 Can't we can TOAST?

• TOAST (The Oversized-Attribute Storage Technique) is a mechanism for storing
data larger than 8KB

§ By default, PostgreSQL “TOASTs” values over 2KB (510d 4-byte float)

• Storage types:

§ PLAIN: Data stored inline with table

§ EXTENDED: Data stored/compressed in TOAST table when threshold exceeded
– pgvector default before 0.6.0

§ EXTERNAL: Data stored in TOAST table when threshold exceeded
– pgvector default 0.6.0+

§ MAIN: Data stored compressed inline with table

61

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualizing TOAST for pgvector

62

12,"jkatz",[0.3213,0.
12321,0.12312,0.12
321,0.12321,0.1232
1,0.1123123,0.1232
1,0.12321,0.1232,0.
12312,0.12321,0.12
321,0.12312]

PLAIN

12,"jkatz",12345678 [0.3213,0.12321,0.1
2312,0.12321,0.123
21,0.12321,0.11231
23,0.12321,0.12321
,0.1232,0.12312,0.1
2321,0.12321,0.123
12]

EXTENDED / EXTERNAL

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on vector data

• Traditionally, TOAST data is not on the "hot path"

• Impacts query plan and maintenance operations

• Compression is ineffective

• Unable to use for index pages

63

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)

-> Gather Merge (cost=772135.51..1991670.17 rows=10000002 width=12)

 Workers Planned: 6

 -> Sort (cost=771135.42..775302.08 rows=1666667 width=12)

 Sort Key: ((<-> embedding))

 -> Parallel Seq Scan on vecs128 (cost=0.00..735119.34 rows=1666667
width=12)

128 dimensions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)

-> Gather Merge (cost=149970.15..1347330.44 rows=10000116 width=12)

 Workers Planned: 4

 -> Sort (cost=148970.09..155220.16 rows=2500029 width=12)

 Sort Key: (($1 <-> embedding))

 -> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029
width=12)

1,536 dimensions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)

-> Gather Merge (cost=95704.33..1352239.13 rows=10000111 width=12)

 Workers Planned: 11

 -> Sort (cost=94704.11..96976.86 rows=909101 width=12)

 Sort Key: (($1 <-> embedding))

 -> Parallel Seq Scan on vecs1536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving PostgreSQL storage of vector data

• Continue investing in quantization

• Improve planner to understand when TOAST data is part of the hot path

• TOAST / page chaining system for index pages

• Modifiable size for index pages

67

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Filtering

SELECT id

FROM products

WHERE products.category_id = 7

ORDER BY :'q' <-> products.embedding

LIMIT 10;

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How filtering impacts ANN queries

• PostgreSQL may choose to not use the index

• Uses an index, but does not return enough results

• Filtering occurs after using the index

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Current filtering strategies

• Partial index

• Partition

CREATE INDEX ON docs

 USING hnsw(embedding vector_l2_ops)

 WHERE category_id = 7;

CREATE TABLE docs_cat7

 PARTITION OF docs

 FOR VALUES IN (7);

CREATE INDEX ON docs_cat7

 USING hnsw(embedding vector_l2_ops);

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Filtering with "hybrid search"

SELECT id

FROM products

WHERE

 plainto_tsquery('english', 'elephant vase') @@

 to_tsvector('english', description)

ORDER BY :'q' <=> embedding

LIMIT 10;

71

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving filtering with vector data in PostgreSQL

• "Multi-column" indexes

• Remove extra distance calculation executions when filtering junk columns

§ Index-only scans

• Pushdown to covering indexes

• Using other index mechanisms to filter data set

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector and VACUUM

• Innovation: pgvector HNSW implementation supports updates and deletes!

Phase 1: HidePhase 2: Repair

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Improving VACUUM for pgvector

• Framework for parallel vacuum of custom index types

• Anything that can simplify implementing VACUUM :-)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Distributed queries for pgvector – why?

• Not enough memory for workload to
meet latency target

• Network overhead must be acceptable

• Can manage complexity of multi-node
system

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Setup foreign data wrapper
CREATE EXTENSION IF NOT EXISTS vector;

CREATE EXTENSION IF NOT EXISTS postgres_fdw;

CREATE SERVER vectors1

FOREIGN DATA WRAPPER postgres_fdw

OPTIONS (

 async_capable 'true', extensions 'vector', dbname 'vectors', host
'<NODE1>'

);

CREATE SERVER vectors2

FOREIGN DATA WRAPPER postgres_fdw

OPTIONS (

 async_capable 'true', extensions 'vector', dbname 'vectors', host
'<NODE2>'

);

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Setup foreign tables
CREATE TABLE vectors (

 id uuid,

 node_id int,

 embedding vector(768)

) PARTITION BY LIST(node_id);

CREATE FOREIGN TABLE vectors_node1 PARTITION OF vectors

 FOR VALUES IN (1)

 SERVER vectors1

 OPTIONS (schema_name 'public', table_name 'vectors');

CREATE FOREIGN TABLE vectors_node2 PARTITION OF vectors

 FOR VALUES IN (2)

 SERVER vectors2

 OPTIONS (schema_name 'public', table_name 'vectors');

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example EXPLAIN output

Limit (cost=200.01..206.45 rows=10 width=28) (actual time=18.171..18.182 rows=10
loops=1)

 -> Merge Append (cost=200.01..3222700.01 rows=5000000 width=28) (actual
time=18.169..18.179 rows=10 loops=1)

 Sort Key: (('$1'::vector <=> vectors.embedding))

 -> Foreign Scan on vectors_node1 vectors_1 (cost=100.00..1586350.00
rows=2500000 width=28) (actual time=8.607..8.609 rows=2 loops=1)

 -> Foreign Scan on vectors_node2 vectors_2 (cost=100.00..1586350.00
rows=2500000 width=28) (actual time=9.559..9.566 rows=9 loops=1)

Planning Time: 0.298 ms

Execution Time: 19.355 ms

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parallel query for pgvector

• pgvector doesn't support parallel query

§ Benefits IVFFlat more than HNSW

• Index AM won't let PostgreSQL choose parallel plan

79

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Hardware acceleration for pgvector

• Index building (esp. HNSW) uses most computation time

§ Can see increased CPU utilization with higher hnsw.ef_search

• pgvector uses compiler autovectorization, but has started adding explicit dispatching
instructions

• Newer CPU architectures contain more instructions for SIMD, but may not be widely available

• GPU – huge penalty to move to GPU memory without GPUDirect

§ Index building could benefit from GPU

80

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

"Dogs not barking"

• Matrices / tensors

• Storage type / capacity

• Native vector support for PostgreSQL

81

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Summary and next steps

82

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

(Prioritized) summary of areas to improve

• Filters

§ Hybrid search

• Parallelized vacuum

• Better async pushdown for postgres_fdw

• Additional hardware acceleration methods

• Parallel query

• TOAST / storage updates

83

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Community contributions make pgvector better

• Improved locking during HNSW build

• SIMD dispatching for distance functions

• Integration of upstream SIMD support (pg_popcount)

• Memory allocation / usage optimizations during index builds

• Identify common search patterns and help prioritize

84

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!
Jonathan Katz
jkatz@amazon.com
@jkatz05

85

