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Overview: Why do we care about vector search?

Why use PostgreSQL for vector searches?

Year-in-review of pgvector development

Ongoing work and recommendations

Agenda
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Pretrained on vast amounts of 
unstructured data

Contain a large number of parameters that make 
them capable of learning complex concepts

Can be applied in a wide range of contexts

Customize FMs using your data for domain-
specific tasks

Generative AI is powered
by foundation models



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval Augmented 
Generation (RAG)

Configure FM to interact with 
your data

A N S W E RQ U E S T I O N

K N O W L E D G E  
B A S E S

F O U N D A T I O N
M O D E L

How much does a blue 
elephant vase cost?

Product catalog

Price data

A blue elephant vase 
typically costs $19.99
Sorry, I don't know
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The role of vectors in RAG

Document 
chunks

EmbeddingsPDF 
document

Database

User

Embeddings Foundation 
model
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Question

Question + Context

Response
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Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

Blue elephant vase 
that can hold up to 
three plants in it, 
hand painted…

0.1234
0.1231
0.1232
0.9005
0.2489

1536 dimensions

4-byte floats

6152B => 6KiB

0.12310
0.24234
0.59405
0.23430
0.23432
0.20551
0.70543
0.20559

0.20559
0.70543
0.23432
0.24234
0.23430
0.12310
0.20551
0.59405

1,000,000 => 5.7GB
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Approximate nearest neighbor (ANN)

• Find similar vectors without searching 
all of them

• Faster than exact nearest neighbor

• “Recall” – % of expected results

Recall: 80%
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Key metrics to consider

• Index build time

• Index size

• Recall

• Query throughput (queries per second)

• p99 query latency
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PostgreSQL as a "vector database"
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{

  "id": 5432,

  "name": "PostgreSQL",

  "description": "World's most advanced open source 
relational database",

  "supportedVersions": [16, 15, 14, 13, 12]

}



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

{

  "id": 5432,
  "name": 

"PostgreSQL",
  "description": 
"World's most advanced 

open source relational 
database",

  "supportedVersions": 
[16, 15, 14, 13, 12]
}

id 5432

name PostgreSQL

description world's most...

supportedVersions [16,15,14,13,12]
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{

  "id": 5432,
  "name": 

"PostgreSQL",
  "description": 
"World's most advanced 

open source relational 
database",

  "supportedVersions": 
[16, 15, 14, 13, 12]
}



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Timeline of JSON storage
• 2000-2001: JSON invented

• 2004: AJAX model emerges in wider deployments

• 2006: RFC 4627 publishes JSON format

• 2006-2009: JSON-specific data stores emerge

• 2012: PostgreSQL adds support for JSON (text)

• 2013: ECMA-404 standardizes JSON

• 2014: PostgreSQL adds support for JSONB (binary)

• 2017: SQL/JSON standard published

• 2019: PostgreSQL adds SQL/JSON path language

• 2023: PostgreSQL adds SQL/JSON constructors and predicates

• 2024: PostgreSQL adds SQL/JSON query functions and JSON_TABLE
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Why use PostgreSQL for vector searches?

• Existing client libraries work without modification

§ May require an upgrade

• Convenient to co-locate app + AI/ML data in same database 

• Interfacing with PostgreSQL storage gives ACID transactional storage
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Why care about ACID for vectors?

• Atomicity: "All or nothing" stored in transaction (bulk loads)

• Consistency: Follows rules for other data stored in database

• Isolation: Correctness in returned results; committed transactions "immediately 
available"

• Durability: One committed, vectors are safely stored.
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Native

• ARRAY
• cube

Extensions

• pgvector
• pg_embedding
• pgvecto.rs
• Lantern
• Timescale Vector
• pgvector-remote

PostgreSQL support for vectors
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pgvector popularity

20



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why pgvector?

April 2023

sift-128-eucildean

Source: https://github.com/erikbern/ann-benchmarks
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2023

• Vector searches in PostgreSQL
• "It was there"

• Can use existing PostgreSQL drivers

• Open source

• C-based

2024

• High performance vector searches

• Support for larger vectors

• Sustained, rapid improvements

• Better support in developer tools

22

Why pgvector?
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pgvector: Year-in-review timeline
• v0.4.x (1/2023 – 6/2023)

§ Improved IVFFlat plan costs

§ Increasing dimension of vectors stored in table + index

• v0.5.x (8/2023 – 10/2023)

§ Add HNSW index + distance function performance improvements

§ Parallel IVFFlat builds

• v0.6.x (1/2024 – 3/2024)

§ Parallel HNSW index builds + in-memory build optimizations

• v0.7.x (4/2024)

§ halfvec (2-byte float), bit(n) index support, sparsevec (up to 1B dim)

§ Quantization (scalar/binary), Jaccard/hamming distance, explicit SIMD
23
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Indexing in pgvector

24
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How does pgvector index a vector?

0.0234
0.093

 -0.9123
0.1055

Valid?

✅ Same dimensions?
✅ Magnitude > 0?

Normalized?

🛠 If not, normalize

0.0253
0.1007

 -0.9880
0.1142
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Indexing methods: IVFFlat and HNSW

• IVFFlat

§ K-means based

§ Organize vectors into lists

§ Requires prepopulated data

§ Insert time bounded by # lists

• HNSW

§ Graph based

§ Organize vectors into 
“neighborhoods”

§ Iterative insertions

§ Insertion time increases as data in 
graph increases 
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IVFFlat index building parameters

• lists

§ Number of “buckets” for organizing vectors

§ Tradeoff between number of vectors in bucket and relevancy

CREATE INDEX ON products
USING ivfflat(embedding) WITH (lists=3);
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Building an IVFFlat index
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Building an IVFFlat index: Assign lists
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Querying an IVFFlat index

SET ivfflat.probes TO 1

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3
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Querying an IVFFlat index

SET ivfflat.probes TO 2

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3
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HNSW index building parameters

• m

§ Maximum number of bidirectional links between indexed vectors

§ Default: 16

• ef_construction

§ Number of vectors to maintain in “nearest neighbor” list

§ Default: 64
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Building an HNSW index



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 2
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Building an HNSW index

Layer 2
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Building an HNSW index

Layer 1
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Building an HNSW index

Layer 0
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HNSW query parameters

• hnsw.ef_search

§ Number of vectors to maintain in “nearest neighbor” list

§ Must be greater than or equal to LIMIT
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Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 0
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Querying an HNSW index

Layer 0
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Quantization

45

[0.0435122, -0.2304432, -0.4521324,
 0.98652234, -0.1123234, 0.75401234]

Flat

[0.0432, -0.234, -0.452,0.986,
-0.112, 0.751]

Scalar Quantization (2-byte float)

[1, 0, 0, 1, 0, 1]

Binary Quantization

[129, 99, 67, 244, 126, 230]

Scalar Quantization (1-byte uint)
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pgvector and Quantization

-- 2-byte float (fp16) quantization

CREATE INDEX ON documents USING

 hnsw((embedding::halfvec(3072)) halfvec_cosine_ops);

SELECT id

FROM documents

ORDER BY embedding::halfvec(3072) <=> $1::halfvec(3072)

LIMIT 10;

 46
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pgvector and Quantization
-- Binary quantization

CREATE INDEX ON documents USING

 hnsw ((binary_quantize(embedding)::bit(3072)) bit_hamming_ops);

SELECT id FROM documents

ORDER BY binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)

LIMIT 10;

-- Rerank query for binary quantization

SELECT i.id FROM (

 SELECT id, embedding <=> $1 AS distance

 FROM items

 ORDER BY binary_quantize(embedding)::bit(3072) <~> binary_quantize($1)

 LIMIT 800 -- bound by hnsw.ef_search

) i

ORDER BY i.distance LIMIT 10;

 47
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Scalar quantization

48

No Quantization 2-byte float quantization

Index size (MB) 7734 3867

Index build time (s) 250 146

Recall @ ef_search=10 0.851 0.854

QPS @ ef_search=10 1154 1164

Recall @ ef_search=40 0.967 0.968

QPS @ ef_search=40 567 583

Recall @ ef_search=200 0.996 0.996

QPS @ ef_search=200 158 163

dbpedia-openai-1m-angular (1MM 1,536-dim); m=16; ef_construction=256
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Binary quantization

49

No Quantization Binary quantization / rerank

Index size (MB) 7734 473

Index build time (s) 250 49

Recall @ ef_search=10 0.851 0.604

QPS @ ef_search=10 1154 1687

Recall @ ef_search=40 0.967 0.916

QPS @ ef_search=40 567 883

Recall @ ef_search=200 0.996 0.990

QPS @ ef_search=200 158 236

dbpedia-openai-1m-angular (1MM 1,536-dim); m=16; ef_construction=256
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Quantization limitations

• Reduction of information

• Law of large numbers / curse of dimensionality

• "Double storage" – heap / index

50
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A year of pgvector in charts

51
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pgvector index build time

52
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Impact of parallelism on HNSW build time
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Why index build speed matters (Serial build)
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Why index build speed matters (Parallel build)
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pgvector query latency (p99)
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pgvector throughput
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Ongoing challenges and 
recommendations

59
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The 8K conundrum
• Page: PostgreSQL atomic storage unit

§ 8192 bytes = 8K = 8KiB

• Heap (table) pages are resizable as a compile time flag

• Index pages are not resizable

• This is a real (😉) problem for vectors

§ 1536-dim 4-byte vector = 6KiB

§ 3072-dim 4-byte vector = 12KiB

60
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🍞 Can't we can TOAST? 

• TOAST (The Oversized-Attribute Storage Technique) is a mechanism for storing 
data larger than 8KB

§ By default, PostgreSQL “TOASTs” values over 2KB (510d 4-byte float)

• Storage types:

§ PLAIN: Data stored inline with table

§ EXTENDED: Data stored/compressed in TOAST table when threshold exceeded
– pgvector default before 0.6.0

§ EXTERNAL: Data stored in TOAST table when threshold exceeded
– pgvector default 0.6.0+

§ MAIN: Data stored compressed inline with table

61
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Visualizing TOAST for pgvector

62

12,"jkatz",[0.3213,0.
12321,0.12312,0.12
321,0.12321,0.1232
1,0.1123123,0.1232
1,0.12321,0.1232,0.
12312,0.12321,0.12
321,0.12312]

PLAIN

12,"jkatz",12345678 [0.3213,0.12321,0.1
2312,0.12321,0.123
21,0.12321,0.11231
23,0.12321,0.12321
,0.1232,0.12312,0.1
2321,0.12321,0.123
12]

EXTENDED / EXTERNAL
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Impact of TOAST on vector data

• Traditionally, TOAST data is not on the "hot path"

• Impacts query plan and maintenance operations

• Compression is ineffective

• Unable to use for index pages

63
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Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)

-> Gather Merge (cost=772135.51..1991670.17 rows=10000002 width=12)

    Workers Planned: 6

    -> Sort (cost=771135.42..775302.08 rows=1666667 width=12)

        Sort Key: ((<-> embedding))

        -> Parallel Seq Scan on vecs128 (cost=0.00..735119.34 rows=1666667 
width=12)

128 dimensions
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Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)

-> Gather Merge (cost=149970.15..1347330.44 rows=10000116 width=12)

    Workers Planned: 4

    -> Sort (cost=148970.09..155220.16 rows=2500029 width=12)

        Sort Key: (($1 <-> embedding))

        -> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029 
width=12)

1,536 dimensions
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Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)

-> Gather Merge (cost=95704.33..1352239.13 rows=10000111 width=12)

    Workers Planned: 11

    -> Sort (cost=94704.11..96976.86 rows=909101 width=12)

        Sort Key: (($1 <-> embedding))

        -> Parallel Seq Scan on vecs1536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1
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Improving PostgreSQL storage of vector data

• Continue investing in quantization

• Improve planner to understand when TOAST data is part of the hot path

• TOAST / page chaining system for index pages

• Modifiable size for index pages

67
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Filtering

SELECT id

FROM products

WHERE products.category_id = 7

ORDER BY :'q' <-> products.embedding

LIMIT 10;
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How filtering impacts ANN queries

• PostgreSQL may choose to not use the index

• Uses an index, but does not return enough results

• Filtering occurs after using the index
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Current filtering strategies

• Partial index

• Partition

CREATE INDEX ON docs

  USING hnsw(embedding vector_l2_ops)

  WHERE category_id = 7;

---

CREATE TABLE docs_cat7

  PARTITION OF docs

  FOR VALUES IN (7);

CREATE INDEX ON docs_cat7

 USING hnsw(embedding vector_l2_ops);
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Filtering with "hybrid search"

SELECT id

FROM products

WHERE

 plainto_tsquery('english', 'elephant vase') @@

  to_tsvector('english', description)

ORDER BY :'q' <=> embedding

LIMIT 10;

71
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Improving filtering with vector data in PostgreSQL

• "Multi-column" indexes

• Remove extra distance calculation executions when filtering junk columns

§ Index-only scans

• Pushdown to covering indexes

• Using other index mechanisms to filter data set
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pgvector and VACUUM

• Innovation: pgvector HNSW implementation supports updates and deletes!

Phase 1: HidePhase 2: Repair
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Improving VACUUM for pgvector

• Framework for parallel vacuum of custom index types

• Anything that can simplify implementing VACUUM :-)
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Distributed queries for pgvector – why?

• Not enough memory for workload to 
meet latency target 

• Network overhead must be acceptable

• Can manage complexity of multi-node 
system
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Setup foreign data wrapper
CREATE EXTENSION IF NOT EXISTS vector;

CREATE EXTENSION IF NOT EXISTS postgres_fdw;

CREATE SERVER vectors1

FOREIGN DATA WRAPPER postgres_fdw

OPTIONS (

  async_capable 'true', extensions 'vector', dbname 'vectors', host 
'<NODE1>'

);

CREATE SERVER vectors2

FOREIGN DATA WRAPPER postgres_fdw

OPTIONS (

  async_capable 'true', extensions 'vector', dbname 'vectors', host 
'<NODE2>'

);
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Setup foreign tables
CREATE TABLE vectors (

  id uuid,

  node_id int,

  embedding vector(768)

) PARTITION BY LIST(node_id);

CREATE FOREIGN TABLE vectors_node1 PARTITION OF vectors

  FOR VALUES IN (1)

  SERVER vectors1

  OPTIONS (schema_name 'public', table_name 'vectors');

CREATE FOREIGN TABLE vectors_node2 PARTITION OF vectors

  FOR VALUES IN (2)

  SERVER vectors2

  OPTIONS (schema_name 'public', table_name 'vectors');
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Example EXPLAIN output

Limit (cost=200.01..206.45 rows=10 width=28) (actual time=18.171..18.182 rows=10 
loops=1)

  -> Merge Append (cost=200.01..3222700.01 rows=5000000 width=28) (actual 
time=18.169..18.179 rows=10 loops=1)

  Sort Key: (('$1'::vector <=> vectors.embedding))

    -> Foreign Scan on vectors_node1 vectors_1 (cost=100.00..1586350.00 
rows=2500000 width=28) (actual time=8.607..8.609 rows=2 loops=1)

    -> Foreign Scan on vectors_node2 vectors_2 (cost=100.00..1586350.00 
rows=2500000 width=28) (actual time=9.559..9.566 rows=9 loops=1)

Planning Time: 0.298 ms

Execution Time: 19.355 ms
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Parallel query for pgvector

• pgvector doesn't support parallel query

§ Benefits IVFFlat more than HNSW

• Index AM won't let PostgreSQL choose parallel plan

79
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Hardware acceleration for pgvector

• Index building (esp. HNSW) uses most computation time 

§ Can see increased CPU utilization with higher hnsw.ef_search

• pgvector uses compiler autovectorization, but has started adding explicit dispatching 
instructions

• Newer CPU architectures contain more instructions for SIMD, but may not be widely available

• GPU – huge penalty to move to GPU memory without GPUDirect

§ Index building could benefit from GPU

80
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"Dogs not barking"

• Matrices / tensors

• Storage type / capacity

• Native vector support for PostgreSQL
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Summary and next steps
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(Prioritized) summary of areas to improve

• Filters

§ Hybrid search

• Parallelized vacuum

• Better async pushdown for postgres_fdw

• Additional hardware acceleration methods

• Parallel query

• TOAST / storage updates
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Community contributions make pgvector better

• Improved locking during HNSW build

• SIMD dispatching for distance functions

• Integration of upstream SIMD support (pg_popcount)

• Memory allocation / usage optimizations during index builds

• Identify common search patterns and help prioritize
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Thank you!
Jonathan Katz
jkatz@amazon.com
@jkatz05
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